Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea.
نویسندگان
چکیده
The regulation of scale and proportion in living organisms is an intriguing and enduring problem of biology. Regulatory mechanisms for controlling body size and proportion are clearly illustrated by the regeneration of missing body parts after amputation, in which the newly regenerated tissues ultimately attain a size that is anatomically congruent with the size of the rest of the organism. Understanding the molecular processes underpinning scaling would have deep consequences for our comprehension of tissue regeneration, developmental ontogeny, growth, and evolution. Although many theories have been put forward to explain this process, it is interesting that no satisfactory mechanistic explanation is currently available to explain scalar relationships. We chose to investigate the freshwater planarian, a commonly used model system for the study of metazoan regeneration, to delineate a strategy for the molecular dissection of scale and proportion mechanisms in metazoans. Here, we report on the cloning and discrete expression pattern of a novel planarian gene, which shares homology with the DEG/ENaC super-family of sodium channels. We have named H.112.3c cintillo ("head ribbon" in Spanish) and present a strategy for using the expression of this gene to monitor scale and proportion regulation during regeneration, growth and degrowth in the freshwater planarian Schmidtea mediterranea.
منابع مشابه
A premeiotic function for boule in the planarian Schmidtea mediterranea.
Mutations in Deleted in Azoospermia (DAZ), a Y chromosome gene, are an important cause of human male infertility. DAZ is found exclusively in primates, limiting functional studies of this gene to its homologs: boule, required for meiotic progression of germ cells in invertebrate model systems, and Daz-like (Dazl), required for early germ cell maintenance in vertebrates. Dazl is believed to have...
متن کاملAmmonia excretion in the freshwater planarian Schmidtea mediterranea.
In aquatic invertebrates, metabolic nitrogenous waste is excreted predominately as ammonia. Very little is known, however, of the underlying mechanisms of ammonia excretion, particularly in freshwater species. Our results indicate that in the non-parasitic freshwater planarian Schmidtea mediterranea, ammonia excretion depends on acidification of the apical unstirred layer of the body surface an...
متن کاملGenome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea
In eukaryotes, 3' untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3'UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture...
متن کاملSmedGD: the Schmidtea mediterranea genome database
The planarian Schmidtea mediterranea is rapidly emerging as a model organism for the study of regeneration, tissue homeostasis and stem cell biology. The recent sequencing, assembly and annotation of its genome are expected to further buoy the biomedical importance of this organism. In order to make the extensive data associated with the genome sequence accessible to the biomedical and planaria...
متن کاملHedgehog signaling regulates gene expression in planarian glia
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental dynamics : an official publication of the American Association of Anatomists
دوره 226 2 شماره
صفحات -
تاریخ انتشار 2003